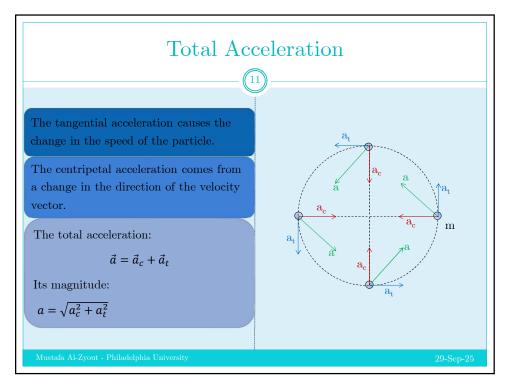

Centripetal Acceleration, cont The magnitude of the centripetal acceleration vector is given by • $a_c = \frac{v^2}{r}$ The direction of the centripetal acceleration vector is always changing, to stay directed toward the center of the circle of motion.


7

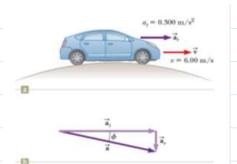
q

The Centripetal Acceleration of the Earth Saturday, 30 January, 2021 12:28	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014 J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013	
What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?		
SOLUTION		
The period of the Earth's orbit, which we know is one year, a	nd the radius of the Earth's orbit around the Sun, which	
is $1.496 \times 10^{11} m$.		
$a_c = \frac{v^2}{r} = \frac{\left(\frac{2\pi r}{T}\right)^2}{r} = \frac{4\pi^2 r}{T^2}$		
$a_c = \frac{r}{r} = \frac{r}{r} = \frac{r}{T^2}$		
$a_c = \frac{4\pi^2 (1.496 \times 10^{11} m)}{(1yr)^2} \left(\frac{1yr}{3.156 \times 10^7 s}\right)^2 = 5.9$	$3 \times 10^{-3} m/s^2$	
$(1yr)^2$ $(3.156 \times 10^7 \text{s})$		

The Centripetal Acceleration Saturday, 30 January, 2021 12:28	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.
An object moves at constant speed along a circular path in a horizontal xy plane, with the center at the origin . When the object is at $x = -2 m$, its velocity is $(-4 m/s) \hat{j}$. Give the object's velocity and acceleration at $y = 2 m$.	
Solution	
$\vec{v} = -(4 \text{ m/s})\hat{\imath}$	
$\vec{a}_c = \frac{v^2}{r}(-\hat{j}) = \frac{4^2}{2}(-\hat{j}) = -8(\hat{j})m/s^2$	

Saturday, 30 January, 2021 12:2

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.


R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.

J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.

H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.

H. A. Radi and J. O. Rasmussen, *Principles of Physics For Scientists and Engineers*, 1st ed., SPRINGER, 2013.

A car leaves a stop sign and exhibits a constant acceleration of $0.3 \ m/s^2$ parallel to the roadway. The car passes over a rise in the roadway such that the top of the rise is shaped like a circle of radius $500 \ m$. At the moment the car is at the top of the rise, its velocity vector is horizontal and has a magnitude of $6 \ m/s$. What are the magnitude and direction of the total acceleration vector for the car at this instant?

SOLUTION

The tangential acceleration vector has magnitude (0.3 m/s^2) and is horizontal.

the radial acceleration:

$$a_r = -\frac{v^2}{r} = -\frac{(6.00m/s)^2}{500m} = -0.0720m/s^2$$

Find the magnitude of \vec{a} :

$$\sqrt{a_r^2 + a_t^2} = \sqrt{(-0.0720m/s^2)^2 + (0.300m/s^2)^2} = 0.309m/s^2$$

Find the angle ϕ between \vec{a} and the horizontal:

$$\phi = tan^{-1} \frac{a_r}{a_t} = tan^{-1} \left(\frac{-0.0720m/s^2}{0.300m/s^2} \right) = -13.5^{\circ}$$